is that the source for these is
encoded in UTF-8, instead of being a code point. It is passed as a buffer
starting at C, with C pointing to one byte beyond its end. The C
buffer may certainly contain more than one code point; but only the first one
(up through S>) is examined. If the UTF-8 for the input character is
malformed in some way, the program may croak, or the function may return the
REPLACEMENT CHARACTER, at the discretion of the implementation, and subject to
change in future releases.
=for apidoc Am|UV|toLOWER|UV cp
=for apidoc_item |UV|toLOWER_A|UV cp
=for apidoc_item |UV|toLOWER_LATIN1|UV cp
=for apidoc_item |UV|toLOWER_LC|UV cp
=for apidoc_item |UV|toLOWER_L1|UV cp
=for apidoc_item |UV|toLOWER_utf8|U8* p|U8* e|U8* s|STRLEN* lenp
=for apidoc_item |UV|toLOWER_utf8_safe|U8* p|U8* e|U8* s|STRLEN* lenp
=for apidoc_item |UV|toLOWER_uvchr|UV cp|U8* s|STRLEN* lenp
These all return the lowercase of a character. The differences are what domain
they operate on, and whether the input is specified as a code point (those
forms with a C parameter) or as a UTF-8 string (the others). In the latter
case, the code point to use is the first one in the buffer of UTF-8 encoded
code points, delineated by the arguments S>.
C and C are synonyms of each other. They return the
lowercase of any uppercase ASCII-range code point. All other inputs are
returned unchanged. Since these are macros, the input type may be any integral
one, and the output will occupy the same number of bits as the input.
C and C are synonyms of each other. They behave
identically as C for ASCII-range input. But additionally will return
the lowercase of any uppercase code point in the entire 0..255 range, assuming
a Latin-1 encoding (or the EBCDIC equivalent on such platforms).
C returns the lowercase of the input code point according to the
rules of the current POSIX locale. Input code points outside the range 0..255
are returned unchanged.
C returns the lowercase of any Unicode code point. The return
value is identical to that of C for input code points in the 0..255
range. The lowercase of the vast majority of Unicode code points is the same
as the code point itself. For these, and for code points above the legal
Unicode maximum, this returns the input code point unchanged. It additionally
stores the UTF-8 of the result into the buffer beginning at C, and its
length in bytes into C<*lenp>. The caller must have made C large enough to
contain at least C bytes to avoid possible overflow.
NOTE: the lowercase of a code point may be more than one code point. The
return value of this function is only the first of these. The entire lowercase
is returned in C. To determine if the result is more than a single code
point, you can do something like this:
uc = toLOWER_uvchr(cp, s, &len);
if (len > UTF8SKIP(s)) { is multiple code points }
else { is a single code point }
C and C are synonyms of each other. The only
difference between these and C is that the source for these is
encoded in UTF-8, instead of being a code point. It is passed as a buffer
starting at C, with C pointing to one byte beyond its end. The C
buffer may certainly contain more than one code point; but only the first one
(up through S>) is examined. If the UTF-8 for the input character is
malformed in some way, the program may croak, or the function may return the
REPLACEMENT CHARACTER, at the discretion of the implementation, and subject to
change in future releases.
=for apidoc Am|UV|toTITLE|UV cp
=for apidoc_item |UV|toTITLE_A|UV cp
=for apidoc_item |UV|toTITLE_utf8|U8* p|U8* e|U8* s|STRLEN* lenp
=for apidoc_item |UV|toTITLE_utf8_safe|U8* p|U8* e|U8* s|STRLEN* lenp
=for apidoc_item |UV|toTITLE_uvchr|UV cp|U8* s|STRLEN* lenp
These all return the titlecase of a character. The differences are what domain
they operate on, and whether the input is specified as a code point (those
forms with a C parameter) or as a UTF-8 string (the others). In the latter
case, the code point to use is the first one in the buffer of UTF-8 encoded
code points, delineated by the arguments S>.
C and C are synonyms of each other. They return the
titlecase of any lowercase ASCII-range code point. In this range, the
titlecase is identical to the uppercase. All other inputs are returned
unchanged. Since these are macros, the input type may be any integral one, and
the output will occupy the same number of bits as the input.
There is no C nor C as the titlecase of some code
points in the 0..255 range is above that range or consists of multiple
characters. Instead use C.
C returns the titlecase of any Unicode code point. The return
value is identical to that of C for input code points in the ASCII
range. The titlecase of the vast majority of Unicode code points is the same
as the code point itself. For these, and for code points above the legal
Unicode maximum, this returns the input code point unchanged. It additionally
stores the UTF-8 of the result into the buffer beginning at C, and its
length in bytes into C<*lenp>. The caller must have made C large enough to
contain at least C bytes to avoid possible overflow.
NOTE: the titlecase of a code point may be more than one code point. The
return value of this function is only the first of these. The entire titlecase
is returned in C. To determine if the result is more than a single code
point, you can do something like this:
uc = toTITLE_uvchr(cp, s, &len);
if (len > UTF8SKIP(s)) { is multiple code points }
else { is a single code point }
C and C are synonyms of each other. The only
difference between these and C is that the source for these is
encoded in UTF-8, instead of being a code point. It is passed as a buffer
starting at C, with C pointing to one byte beyond its end. The C
buffer may certainly contain more than one code point; but only the first one
(up through S>) is examined. If the UTF-8 for the input character is
malformed in some way, the program may croak, or the function may return the
REPLACEMENT CHARACTER, at the discretion of the implementation, and subject to
change in future releases.
=cut
XXX Still undocumented isVERTWS_uvchr and _utf8; it's unclear what their names
really should be. Also toUPPER_LC and toFOLD_LC, which are subject to change,
and aren't general purpose as they don't work on U+DF, and assert against that.
and isCASED_LC, as it really is more of an internal thing.
Note that these macros are repeated in Devel::PPPort, so should also be
patched there. The file as of this writing is cpan/Devel-PPPort/parts/inc/misc
*/
/*
void below because that's the best fit, and works for Devel::PPPort
=for apidoc_section $integer
=for apidoc AyT||WIDEST_UTYPE
Yields the widest unsigned integer type on the platform, currently either
C or C. This can be used in declarations such as
WIDEST_UTYPE my_uv;
or casts
my_uv = (WIDEST_UTYPE) val;
=cut
*/
#define WIDEST_UTYPE PERL_UINTMAX_T
/* Where there could be some confusion, use this as a static assert in macros
* to make sure that a parameter isn't a pointer. But some compilers can't
* handle this. The only one known so far that doesn't is gcc 3.3.6; the check
* below isn't thorough for such an old compiler, so may have to be revised if
* experience so dictates. */
#if ! PERL_IS_GCC || PERL_GCC_VERSION_GT(3,3,6)
# define ASSERT_NOT_PTR(x) ((x) | 0)
#else
# define ASSERT_NOT_PTR(x) (x)
#endif
/* Likewise, this is effectively a static assert to be used to guarantee the
* parameter is a pointer
*
* NOT suitable for void*
*/
#define ASSERT_IS_PTR(x) (__ASSERT_(sizeof(*(x))) (x))
/* FITS_IN_8_BITS(c) returns true if c doesn't have a bit set other than in
* the lower 8. It is designed to be hopefully bomb-proof, making sure that no
* bits of information are lost even on a 64-bit machine, but to get the
* compiler to optimize it out if possible. This is because Configure makes
* sure that the machine has an 8-bit byte, so if c is stored in a byte, the
* sizeof() guarantees that this evaluates to a constant true at compile time.
*
* For Coverity, be always true, because otherwise Coverity thinks
* it finds several expressions that are always true, independent
* of operands. Well, they are, but that is kind of the point.
*/
#ifndef __COVERITY__
/* The '| 0' part in ASSERT_NOT_PTR ensures a compiler error if c is not
* integer (like e.g., a pointer) */
# define FITS_IN_8_BITS(c) ( (sizeof(c) == 1) \
|| (((WIDEST_UTYPE) ASSERT_NOT_PTR(c)) >> 8) == 0)
#else
# define FITS_IN_8_BITS(c) (1)
#endif
/* Returns true if l <= c <= (l + n), where 'l' and 'n' are non-negative
* Written this way so that after optimization, only one conditional test is
* needed. (The NV casts stop any warnings about comparison always being true
* if called with an unsigned. The cast preserves the sign, which is all we
* care about.) */
#define withinCOUNT(c, l, n) (__ASSERT_((NV) (l) >= 0) \
__ASSERT_((NV) (n) >= 0) \
withinCOUNT_KNOWN_VALID_((c), (l), (n)))
/* For internal use only, this can be used in places where it is known that the
* parameters to withinCOUNT() are valid, to avoid the asserts. For example,
* inRANGE() below, calls this several times, but does all the necessary
* asserts itself, once. The reason that this is necessary is that the
* duplicate asserts were exceeding the internal limits of some compilers */
#define withinCOUNT_KNOWN_VALID_(c, l, n) \
((((WIDEST_UTYPE) (c)) - ASSERT_NOT_PTR(l)) \
<= ((WIDEST_UTYPE) ASSERT_NOT_PTR(n)))
/* Returns true if c is in the range l..u, where 'l' is non-negative
* Written this way so that after optimization, only one conditional test is
* needed. */
#define inRANGE(c, l, u) (__ASSERT_((NV) (l) >= 0) __ASSERT_((u) >= (l)) \
( (sizeof(c) == sizeof(U8)) ? inRANGE_helper_(U8, (c), (l), ((u))) \
: (sizeof(c) == sizeof(U16)) ? inRANGE_helper_(U16,(c), (l), ((u))) \
: (sizeof(c) == sizeof(U32)) ? inRANGE_helper_(U32,(c), (l), ((u))) \
: (__ASSERT_(sizeof(c) == sizeof(WIDEST_UTYPE)) \
inRANGE_helper_(WIDEST_UTYPE,(c), (l), ((u))))))
/* For internal use, this is used by machine-generated code which generates
* known valid calls, with a known sizeof(). This avoids the extra code and
* asserts that were exceeding internal limits of some compilers. */
#define inRANGE_helper_(cast, c, l, u) \
withinCOUNT_KNOWN_VALID_(((cast) (c)), (l), ((u) - (l)))
#ifdef EBCDIC
# ifndef _ALL_SOURCE
/* The native libc isascii() et.al. functions return the wrong results
* on at least z/OS unless this is defined. */
# error _ALL_SOURCE should probably be defined
# endif
#else
/* There is a simple definition of ASCII for ASCII platforms. But the
* EBCDIC one isn't so simple, so is defined using table look-up like the
* other macros below.
*
* The cast here is used instead of '(c) >= 0', because some compilers emit
* a warning that that test is always true when the parameter is an
* unsigned type. khw supposes that it could be written as
* && ((c) == '\0' || (c) > 0)
* to avoid the message, but the cast will likely avoid extra branches even
* with stupid compilers. */
# define isASCII(c) (((WIDEST_UTYPE) ASSERT_NOT_PTR(c)) < 128)
#endif
/* Take the eight possible bit patterns of the lower 3 bits and you get the
* lower 3 bits of the 8 octal digits, in both ASCII and EBCDIC, so those bits
* can be ignored. If the rest match '0', we have an octal */
#define isOCTAL_A(c) ((((WIDEST_UTYPE) ASSERT_NOT_PTR(c)) & ~7) == '0')
#ifdef H_PERL /* If have access to perl.h, lookup in its table */
/* Character class numbers. For internal core Perl use only. The ones less
* than 32 are used in PL_charclass[] and the ones up through the one that
* corresponds to are used by regcomp.h and
* related files. PL_charclass ones use names used in l1_char_class_tab.h but
* their actual definitions are here. If that file has a name not used here,
* it won't compile.
*
* The first group of these is ordered in what I (khw) estimate to be the
* frequency of their use. This gives a slight edge to exiting a loop earlier
* (in reginclass() in regexec.c). Except \v should be last, as it isn't a
* real Posix character class, and some (small) inefficiencies in regular
* expression handling would be introduced by putting it in the middle of those
* that are. Also, cntrl and ascii come after the others as it may be useful
* to group these which have no members that match above Latin1, (or above
* ASCII in the latter case) */
# define CC_WORDCHAR_ 0 /* \w and [:word:] */
# define CC_DIGIT_ 1 /* \d and [:digit:] */
# define CC_ALPHA_ 2 /* [:alpha:] */
# define CC_LOWER_ 3 /* [:lower:] */
# define CC_UPPER_ 4 /* [:upper:] */
# define CC_PUNCT_ 5 /* [:punct:] */
# define CC_PRINT_ 6 /* [:print:] */
# define CC_ALPHANUMERIC_ 7 /* [:alnum:] */
# define CC_GRAPH_ 8 /* [:graph:] */
# define CC_CASED_ 9 /* [:lower:] or [:upper:] under /i */
# define CC_SPACE_ 10 /* \s, [:space:] */
# define CC_BLANK_ 11 /* [:blank:] */
# define CC_XDIGIT_ 12 /* [:xdigit:] */
# define CC_CNTRL_ 13 /* [:cntrl:] */
# define CC_ASCII_ 14 /* [:ascii:] */
# define CC_VERTSPACE_ 15 /* \v */
# define HIGHEST_REGCOMP_DOT_H_SYNC_ CC_VERTSPACE_
/* The members of the third group below do not need to be coordinated with data
* structures in regcomp.[ch] and regexec.c. */
# define CC_IDFIRST_ 16
# define CC_CHARNAME_CONT_ 17
# define CC_NONLATIN1_FOLD_ 18
# define CC_NONLATIN1_SIMPLE_FOLD_ 19
# define CC_QUOTEMETA_ 20
# define CC_NON_FINAL_FOLD_ 21
# define CC_IS_IN_SOME_FOLD_ 22
# define CC_BINDIGIT_ 23
# define CC_OCTDIGIT_ 24
# define CC_MNEMONIC_CNTRL_ 25
/* Unused: 26-31
* If more bits are needed, one could add a second word for non-64bit
* QUAD_IS_INT systems, using some #ifdefs to distinguish between having a 2nd
* word or not. The IS_IN_SOME_FOLD bit is the most easily expendable, as it
* is used only for optimization (as of this writing), and differs in the
* Latin1 range from the ALPHA bit only in two relatively unimportant
* characters: the masculine and feminine ordinal indicators, so removing it
* would just cause /i regexes which match them to run less efficiently.
* Similarly the EBCDIC-only bits are used just for speed, and could be
* replaced by other means */
#if defined(PERL_CORE) || defined(PERL_EXT)
/* An enum version of the character class numbers, to help compilers
* optimize */
typedef enum {
CC_ENUM_ALPHA_ = CC_ALPHA_,
CC_ENUM_ALPHANUMERIC_ = CC_ALPHANUMERIC_,
CC_ENUM_ASCII_ = CC_ASCII_,
CC_ENUM_BLANK_ = CC_BLANK_,
CC_ENUM_CASED_ = CC_CASED_,
CC_ENUM_CNTRL_ = CC_CNTRL_,
CC_ENUM_DIGIT_ = CC_DIGIT_,
CC_ENUM_GRAPH_ = CC_GRAPH_,
CC_ENUM_LOWER_ = CC_LOWER_,
CC_ENUM_PRINT_ = CC_PRINT_,
CC_ENUM_PUNCT_ = CC_PUNCT_,
CC_ENUM_SPACE_ = CC_SPACE_,
CC_ENUM_UPPER_ = CC_UPPER_,
CC_ENUM_VERTSPACE_ = CC_VERTSPACE_,
CC_ENUM_WORDCHAR_ = CC_WORDCHAR_,
CC_ENUM_XDIGIT_ = CC_XDIGIT_
} char_class_number_;
#endif
#define POSIX_CC_COUNT (HIGHEST_REGCOMP_DOT_H_SYNC_ + 1)
START_EXTERN_C
# ifdef DOINIT
EXTCONST U32 PL_charclass[] = {
# include "l1_char_class_tab.h"
};
# else /* ! DOINIT */
EXTCONST U32 PL_charclass[];
# endif
END_EXTERN_C
/* The 1U keeps Solaris from griping when shifting sets the uppermost bit */
# define CC_mask_(classnum) (1U << (classnum))
/* For internal core Perl use only: the base macro for defining macros like
* isALPHA */
# define generic_isCC_(c, classnum) cBOOL(FITS_IN_8_BITS(c) \
&& (PL_charclass[(U8) (c)] & CC_mask_(classnum)))
/* The mask for the _A versions of the macros; it just adds in the bit for
* ASCII. */
# define CC_mask_A_(classnum) (CC_mask_(classnum) | CC_mask_(CC_ASCII_))
/* For internal core Perl use only: the base macro for defining macros like
* isALPHA_A. The foo_A version makes sure that both the desired bit and
* the ASCII bit are present */
# define generic_isCC_A_(c, classnum) (FITS_IN_8_BITS(c) \
&& ((PL_charclass[(U8) (c)] & CC_mask_A_(classnum)) \
== CC_mask_A_(classnum)))
/* On ASCII platforms certain classes form a single range. It's faster to
* special case these. isDIGIT is a single range on all platforms */
# ifdef EBCDIC
# define isALPHA_A(c) generic_isCC_A_(c, CC_ALPHA_)
# define isGRAPH_A(c) generic_isCC_A_(c, CC_GRAPH_)
# define isLOWER_A(c) generic_isCC_A_(c, CC_LOWER_)
# define isPRINT_A(c) generic_isCC_A_(c, CC_PRINT_)
# define isUPPER_A(c) generic_isCC_A_(c, CC_UPPER_)
# else
/* By folding the upper and lowercase, we can use a single range */
# define isALPHA_A(c) inRANGE((~('A' ^ 'a') & (c)), 'A', 'Z')
# define isGRAPH_A(c) inRANGE(c, ' ' + 1, 0x7e)
# define isLOWER_A(c) inRANGE(c, 'a', 'z')
# define isPRINT_A(c) inRANGE(c, ' ', 0x7e)
# define isUPPER_A(c) inRANGE(c, 'A', 'Z')
# endif
# define isALPHANUMERIC_A(c) generic_isCC_A_(c, CC_ALPHANUMERIC_)
# define isBLANK_A(c) generic_isCC_A_(c, CC_BLANK_)
# define isCNTRL_A(c) generic_isCC_A_(c, CC_CNTRL_)
# define isDIGIT_A(c) inRANGE(c, '0', '9')
# define isPUNCT_A(c) generic_isCC_A_(c, CC_PUNCT_)
# define isSPACE_A(c) generic_isCC_A_(c, CC_SPACE_)
# define isWORDCHAR_A(c) generic_isCC_A_(c, CC_WORDCHAR_)
# define isXDIGIT_A(c) generic_isCC_(c, CC_XDIGIT_) /* No non-ASCII xdigits */
# define isIDFIRST_A(c) generic_isCC_A_(c, CC_IDFIRST_)
# define isALPHA_L1(c) generic_isCC_(c, CC_ALPHA_)
# define isALPHANUMERIC_L1(c) generic_isCC_(c, CC_ALPHANUMERIC_)
# define isBLANK_L1(c) generic_isCC_(c, CC_BLANK_)
/* continuation character for legal NAME in \N{NAME} */
# define isCHARNAME_CONT(c) generic_isCC_(c, CC_CHARNAME_CONT_)
# define isCNTRL_L1(c) generic_isCC_(c, CC_CNTRL_)
# define isGRAPH_L1(c) generic_isCC_(c, CC_GRAPH_)
# define isLOWER_L1(c) generic_isCC_(c, CC_LOWER_)
# define isPRINT_L1(c) generic_isCC_(c, CC_PRINT_)
# define isPSXSPC_L1(c) isSPACE_L1(c)
# define isPUNCT_L1(c) generic_isCC_(c, CC_PUNCT_)
# define isSPACE_L1(c) generic_isCC_(c, CC_SPACE_)
# define isUPPER_L1(c) generic_isCC_(c, CC_UPPER_)
# define isWORDCHAR_L1(c) generic_isCC_(c, CC_WORDCHAR_)
# define isIDFIRST_L1(c) generic_isCC_(c, CC_IDFIRST_)
# ifdef EBCDIC
# define isASCII(c) generic_isCC_(c, CC_ASCII_)
# endif
/* Participates in a single-character fold with a character above 255 */
# if defined(PERL_IN_REGCOMP_ANY) || defined(PERL_IN_REGEXEC_C)
# define HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(c) \
(( ! cBOOL(FITS_IN_8_BITS(c))) \
|| (PL_charclass[(U8) (c)] & CC_mask_(CC_NONLATIN1_SIMPLE_FOLD_)))
# define IS_NON_FINAL_FOLD(c) generic_isCC_(c, CC_NON_FINAL_FOLD_)
# define IS_IN_SOME_FOLD_L1(c) generic_isCC_(c, CC_IS_IN_SOME_FOLD_)
# endif
/* Like the above, but also can be part of a multi-char fold */
# define HAS_NONLATIN1_FOLD_CLOSURE(c) \
( (! cBOOL(FITS_IN_8_BITS(c))) \
|| (PL_charclass[(U8) (c)] & CC_mask_(CC_NONLATIN1_FOLD_)))
# define _isQUOTEMETA(c) generic_isCC_(c, CC_QUOTEMETA_)
/* is c a control character for which we have a mnemonic? */
# if defined(PERL_CORE) || defined(PERL_EXT)
# define isMNEMONIC_CNTRL(c) generic_isCC_(c, CC_MNEMONIC_CNTRL_)
# endif
#else /* else we don't have perl.h H_PERL */
/* If we don't have perl.h, we are compiling a utility program. Below we
* hard-code various macro definitions that wouldn't otherwise be available
* to it. Most are coded based on first principles. These are written to
* avoid EBCDIC vs. ASCII #ifdef's as much as possible. */
# define isDIGIT_A(c) inRANGE(c, '0', '9')
# define isBLANK_A(c) ((c) == ' ' || (c) == '\t')
# define isSPACE_A(c) (isBLANK_A(c) \
|| (c) == '\n' \
|| (c) == '\r' \
|| (c) == '\v' \
|| (c) == '\f')
/* On EBCDIC, there are gaps between 'i' and 'j'; 'r' and 's'. Same for
* uppercase. The tests for those aren't necessary on ASCII, but hurt only
* performance (if optimization isn't on), and allow the same code to be
* used for both platform types */
# define isLOWER_A(c) inRANGE((c), 'a', 'i') \
|| inRANGE((c), 'j', 'r') \
|| inRANGE((c), 's', 'z')
# define isUPPER_A(c) inRANGE((c), 'A', 'I') \
|| inRANGE((c), 'J', 'R') \
|| inRANGE((c), 'S', 'Z')
# define isALPHA_A(c) (isUPPER_A(c) || isLOWER_A(c))
# define isALPHANUMERIC_A(c) (isALPHA_A(c) || isDIGIT_A(c))
# define isWORDCHAR_A(c) (isALPHANUMERIC_A(c) || (c) == '_')
# define isIDFIRST_A(c) (isALPHA_A(c) || (c) == '_')
# define isXDIGIT_A(c) ( isDIGIT_A(c) \
|| inRANGE((c), 'a', 'f') \
|| inRANGE((c), 'A', 'F')
# define isPUNCT_A(c) ((c) == '-' || (c) == '!' || (c) == '"' \
|| (c) == '#' || (c) == '$' || (c) == '%' \
|| (c) == '&' || (c) == '\'' || (c) == '(' \
|| (c) == ')' || (c) == '*' || (c) == '+' \
|| (c) == ',' || (c) == '.' || (c) == '/' \
|| (c) == ':' || (c) == ';' || (c) == '<' \
|| (c) == '=' || (c) == '>' || (c) == '?' \
|| (c) == '@' || (c) == '[' || (c) == '\\' \
|| (c) == ']' || (c) == '^' || (c) == '_' \
|| (c) == '`' || (c) == '{' || (c) == '|' \
|| (c) == '}' || (c) == '~')
# define isGRAPH_A(c) (isALPHANUMERIC_A(c) || isPUNCT_A(c))
# define isPRINT_A(c) (isGRAPH_A(c) || (c) == ' ')
# ifdef EBCDIC
/* The below is accurate for the 3 EBCDIC code pages traditionally
* supported by perl. The only difference between them in the controls
* is the position of \n, and that is represented symbolically below */
# define isCNTRL_A(c) ((c) == '\0' || (c) == '\a' || (c) == '\b' \
|| (c) == '\f' || (c) == '\n' || (c) == '\r' \
|| (c) == '\t' || (c) == '\v' \
|| inRANGE((c), 1, 3) /* SOH, STX, ETX */ \
|| (c) == 7F /* U+7F DEL */ \
|| inRANGE((c), 0x0E, 0x13) /* SO SI DLE \
DC[1-3] */ \
|| (c) == 0x18 /* U+18 CAN */ \
|| (c) == 0x19 /* U+19 EOM */ \
|| inRANGE((c), 0x1C, 0x1F) /* [FGRU]S */ \
|| (c) == 0x26 /* U+17 ETB */ \
|| (c) == 0x27 /* U+1B ESC */ \
|| (c) == 0x2D /* U+05 ENQ */ \
|| (c) == 0x2E /* U+06 ACK */ \
|| (c) == 0x32 /* U+16 SYN */ \
|| (c) == 0x37 /* U+04 EOT */ \
|| (c) == 0x3C /* U+14 DC4 */ \
|| (c) == 0x3D /* U+15 NAK */ \
|| (c) == 0x3F)/* U+1A SUB */
# define isASCII(c) (isCNTRL_A(c) || isPRINT_A(c))
# else /* isASCII is already defined for ASCII platforms, so can use that to
define isCNTRL */
# define isCNTRL_A(c) (isASCII(c) && ! isPRINT_A(c))
# endif
/* The _L1 macros may be unnecessary for the utilities; I (khw) added them
* during debugging, and it seems best to keep them. We may be called
* without NATIVE_TO_LATIN1 being defined. On ASCII platforms, it doesn't
* do anything anyway, so make it not a problem */
# if ! defined(EBCDIC) && ! defined(NATIVE_TO_LATIN1)
# define NATIVE_TO_LATIN1(ch) (ch)
# endif
# define isALPHA_L1(c) (isUPPER_L1(c) || isLOWER_L1(c))
# define isALPHANUMERIC_L1(c) (isALPHA_L1(c) || isDIGIT_A(c))
# define isBLANK_L1(c) (isBLANK_A(c) \
|| (FITS_IN_8_BITS(c) \
&& NATIVE_TO_LATIN1((U8) c) == 0xA0))
# define isCNTRL_L1(c) (FITS_IN_8_BITS(c) && (! isPRINT_L1(c)))
# define isGRAPH_L1(c) (isPRINT_L1(c) && (! isBLANK_L1(c)))
# define isLOWER_L1(c) (isLOWER_A(c) \
|| (FITS_IN_8_BITS(c) \
&& (( NATIVE_TO_LATIN1((U8) c) >= 0xDF \
&& NATIVE_TO_LATIN1((U8) c) != 0xF7) \
|| NATIVE_TO_LATIN1((U8) c) == 0xAA \
|| NATIVE_TO_LATIN1((U8) c) == 0xBA \
|| NATIVE_TO_LATIN1((U8) c) == 0xB5)))
# define isPRINT_L1(c) (isPRINT_A(c) \
|| (FITS_IN_8_BITS(c) \
&& NATIVE_TO_LATIN1((U8) c) >= 0xA0))
# define isPUNCT_L1(c) (isPUNCT_A(c) \
|| (FITS_IN_8_BITS(c) \
&& ( NATIVE_TO_LATIN1((U8) c) == 0xA1 \
|| NATIVE_TO_LATIN1((U8) c) == 0xA7 \
|| NATIVE_TO_LATIN1((U8) c) == 0xAB \
|| NATIVE_TO_LATIN1((U8) c) == 0xB6 \
|| NATIVE_TO_LATIN1((U8) c) == 0xB7 \
|| NATIVE_TO_LATIN1((U8) c) == 0xBB \
|| NATIVE_TO_LATIN1((U8) c) == 0xBF)))
# define isSPACE_L1(c) (isSPACE_A(c) \
|| (FITS_IN_8_BITS(c) \
&& ( NATIVE_TO_LATIN1((U8) c) == 0x85 \
|| NATIVE_TO_LATIN1((U8) c) == 0xA0)))
# define isUPPER_L1(c) (isUPPER_A(c) \
|| (FITS_IN_8_BITS(c) \
&& ( IN_RANGE(NATIVE_TO_LATIN1((U8) c), \
0xC0, 0xDE) \
&& NATIVE_TO_LATIN1((U8) c) != 0xD7)))
# define isWORDCHAR_L1(c) (isIDFIRST_L1(c) || isDIGIT_A(c))
# define isIDFIRST_L1(c) (isALPHA_L1(c) || NATIVE_TO_LATIN1(c) == '_')
# define isCHARNAME_CONT(c) (isWORDCHAR_L1(c) \
|| isBLANK_L1(c) \
|| (c) == '-' \
|| (c) == '(' \
|| (c) == ')')
/* The following are not fully accurate in the above-ASCII range. I (khw)
* don't think it's necessary to be so for the purposes where this gets
* compiled */
# define isQUOTEMETA_(c) (FITS_IN_8_BITS(c) && ! isWORDCHAR_L1(c))
/* Many of the macros later in this file are defined in terms of these. By
* implementing them with a function, which converts the class number into
* a call to the desired macro, all of the later ones work. However, that
* function won't be actually defined when building a utility program (no
* perl.h), and so a compiler error will be generated if one is attempted
* to be used. And the above-Latin1 code points require Unicode tables to
* be present, something unlikely to be the case when bootstrapping */
# define generic_isCC_(c, classnum) \
(FITS_IN_8_BITS(c) && S_bootstrap_ctype((U8) (c), (classnum), TRUE))
# define generic_isCC_A_(c, classnum) \
(FITS_IN_8_BITS(c) && S_bootstrap_ctype((U8) (c), (classnum), FALSE))
#endif /* End of no perl.h H_PERL */
#define isALPHANUMERIC(c) isALPHANUMERIC_A(c)
#define isALPHA(c) isALPHA_A(c)
#define isASCII_A(c) isASCII(c)
#define isASCII_L1(c) isASCII(c)
#define isBLANK(c) isBLANK_A(c)
#define isCNTRL(c) isCNTRL_A(c)
#define isDIGIT(c) isDIGIT_A(c)
#define isGRAPH(c) isGRAPH_A(c)
#define isIDFIRST(c) isIDFIRST_A(c)
#define isLOWER(c) isLOWER_A(c)
#define isPRINT(c) isPRINT_A(c)
#define isPSXSPC_A(c) isSPACE_A(c)
#define isPSXSPC(c) isPSXSPC_A(c)
#define isPSXSPC_L1(c) isSPACE_L1(c)
#define isPUNCT(c) isPUNCT_A(c)
#define isSPACE(c) isSPACE_A(c)
#define isUPPER(c) isUPPER_A(c)
#define isWORDCHAR(c) isWORDCHAR_A(c)
#define isXDIGIT(c) isXDIGIT_A(c)
/* ASCII casing. These could also be written as
#define toLOWER(c) (isASCII(c) ? toLOWER_LATIN1(c) : (c))
#define toUPPER(c) (isASCII(c) ? toUPPER_LATIN1_MOD(c) : (c))
which uses table lookup and mask instead of subtraction. (This would
work because the _MOD does not apply in the ASCII range).
These actually are UTF-8 invariant casing, not just ASCII, as any non-ASCII
UTF-8 invariants are neither upper nor lower. (Only on EBCDIC platforms are
there non-ASCII invariants, and all of them are controls.) */
#define toLOWER(c) (isUPPER(c) ? (U8)((c) + ('a' - 'A')) : (c))
#define toUPPER(c) (isLOWER(c) ? (U8)((c) - ('a' - 'A')) : (c))
/* In the ASCII range, these are equivalent to what they're here defined to be.
* But by creating these definitions, other code doesn't have to be aware of
* this detail. Actually this works for all UTF-8 invariants, not just the
* ASCII range. (EBCDIC platforms can have non-ASCII invariants.) */
#define toFOLD(c) toLOWER(c)
#define toTITLE(c) toUPPER(c)
#define toLOWER_A(c) toLOWER(c)
#define toUPPER_A(c) toUPPER(c)
#define toFOLD_A(c) toFOLD(c)
#define toTITLE_A(c) toTITLE(c)
/* Use table lookup for speed; returns the input itself if is out-of-range */
#define toLOWER_LATIN1(c) ((! FITS_IN_8_BITS(c)) \
? (c) \
: PL_latin1_lc[ (U8) (c) ])
#define toLOWER_L1(c) toLOWER_LATIN1(c) /* Synonym for consistency */
/* Modified uc. Is correct uc except for three non-ascii chars which are
* all mapped to one of them, and these need special handling; returns the
* input itself if is out-of-range */
#define toUPPER_LATIN1_MOD(c) ((! FITS_IN_8_BITS(c)) \
? (c) \
: PL_mod_latin1_uc[ (U8) (c) ])
#ifdef USE_LOCALE_CTYPE
# define IN_UTF8_CTYPE_LOCALE PL_in_utf8_CTYPE_locale
# define IN_UTF8_TURKIC_LOCALE PL_in_utf8_turkic_locale
#else
# define IN_UTF8_CTYPE_LOCALE false
# define IN_UTF8_TURKIC_LOCALE false
#endif
/* Use foo_LC_uvchr() instead of these for beyond the Latin1 range */
/* For internal core Perl use only: the base macro for defining macros like
* isALPHA_LC, which uses the current LC_CTYPE locale. 'c' is the code point
* (0-255) to check. In a UTF-8 locale, the result is the same as calling
* isFOO_L1(); 'classnum' is something like CC_UPPER_, which gives the class
* number for doing this. For non-UTF-8 locales, the code to actually do the
* test this is passed in 'non_utf8'. If 'c' is above 255, 0 is returned. For
* accessing the full range of possible code points under locale rules, use the
* macros based on generic_LC_uvchr_ instead of this. */
#define generic_LC_base_(c, classnum, non_utf8_func) \
(! FITS_IN_8_BITS(c) \
? 0 \
: IN_UTF8_CTYPE_LOCALE \
? cBOOL(PL_charclass[(U8) (c)] & CC_mask_(classnum)) \
: cBOOL(non_utf8_func(c)))
/* A helper macro for defining macros like isALPHA_LC. On systems without
* proper locales, these reduce to, e.g., isALPHA_A */
#ifdef CTYPE256
# define generic_LC_(c, classnum, non_utf8_func) \
generic_LC_base_(c, classnum, non_utf8_func)
#else
# define generic_LC_(c, classnum, non_utf8_func) \
generic_isCC_A_(c, classnum)
#endif
/* Below are the definitions for the locale-sensitive character classification
* macros whose input domain is a byte, and the locale isn't UTF-8. These are
* as close as possible to the bare versions on the platform and still yield
* POSIX Standard-compliant results.
*
* There is currently only one place these definitions should be used, in
* certain function calls like Perl_iswordchar_() in inline.h.
*
* Most likely you want to use the macros a ways below with names like
* isALPHA_LC(). Rarely, you may want isU8_ALPHA_LC(), somewhat below.
*
* The first two aren't in C89, so the fallback is to use the non-locale
* sensitive versions; these are the same for all platforms */
#if defined(HAS_ISASCII)
# define is_posix_ASCII(c) isascii((U8) (c))
#else
# define is_posix_ASCII(c) isASCII(c)
#endif
#if defined(HAS_ISBLANK)
# define is_posix_BLANK(c) isblank((U8) (c))
#else
# define is_posix_BLANK(c) isBLANK(c)
#endif
/* The next few are the same in all platforms. */
#define is_posix_CNTRL(c) iscntrl((U8) (c))
#define is_posix_IDFIRST(c) (UNLIKELY((c) == '_') || is_posix_ALPHA(c))
#define is_posix_SPACE(c) isspace((U8) (c))
#define is_posix_WORDCHAR(c) (UNLIKELY((c) == '_') || is_posix_ALPHANUMERIC(c))
/* The base-level case changing macros are also the same in all platforms */
#define to_posix_LOWER(c) tolower((U8) (c))
#define to_posix_UPPER(c) toupper((U8) (c))
#define to_posix_FOLD(c) to_posix_LOWER(c)
#ifdef WIN32
/* The Windows functions don't bother to follow the POSIX standard, which for
* example says that something can't both be a printable and a control. But
* Windows treats \t as both a control and a printable, and does such things as
* making superscripts into both digits and punctuation. These #defines tame
* these flaws by assuming that the definitions of controls (and the other few
* ones defined above) are correct, and then making sure that other definitions
* don't have weirdnesses, by adding a check that \w and its subsets aren't
* ispunct(), and things that are \W, like ispunct(), arent't controls. Not
* all possible weirdnesses are checked for, just ones that were detected on
* actual Microsoft code pages */
# define is_posix_ALPHA(c) \
(isalpha((U8) (c)) && ! is_posix_PUNCT(c))
# define is_posix_ALPHANUMERIC(c) \
(isalnum((U8) (c)) && ! is_posix_PUNCT(c))
# define is_posix_CASED(c) \
((isupper((U8) (c)) || islower((U8) (c))) && ! is_posix_PUNCT(c))
# define is_posix_DIGIT(c) \
(isdigit((U8) (c)) && ! is_posix_PUNCT(c))
# define is_posix_GRAPH(c) \
(isgraph((U8) (c)) && ! is_posix_CNTRL(c))
# define is_posix_LOWER(c) \
(islower((U8) (c)) && ! is_posix_PUNCT(c))
# define is_posix_PRINT(c) \
(isprint((U8) (c)) && ! is_posix_CNTRL(c))
# define is_posix_PUNCT(c) \
(ispunct((U8) (c)) && ! is_posix_CNTRL(c))
# define is_posix_UPPER(c) \
(isupper((U8) (c)) && ! is_posix_PUNCT(c))
# define is_posix_XDIGIT(c) \
(isxdigit((U8) (c)) && ! is_posix_PUNCT(c))
#else
/* For all other platforms, as far as we know, isdigit(), etc. work sanely
* enough */
# define is_posix_ALPHA(c) isalpha((U8) (c))
# define is_posix_ALPHANUMERIC(c) isalnum((U8) (c))
# define is_posix_CASED(c) (islower((U8) (c)) || isupper((U8) (c)))
# define is_posix_DIGIT(c) isdigit((U8) (c))
/* ... But it seems that IBM products treat NBSP as both a space and a
* graphic; these are the two platforms that we have active test beds for.
*/
# if defined(OS390) || defined(_AIX)
# define is_posix_GRAPH(c) (isgraph((U8) (c)) && ! isspace((U8) (c)))
# else
# define is_posix_GRAPH(c) isgraph((U8) (c))
# endif
# define is_posix_LOWER(c) islower((U8) (c))
# define is_posix_PRINT(c) isprint((U8) (c))
# define is_posix_PUNCT(c) ispunct((U8) (c))
# define is_posix_UPPER(c) isupper((U8) (c))
# define is_posix_XDIGIT(c) isxdigit((U8) (c))
#endif
/* Below is the next level up, which currently expands to nothing more
* than the previous layer. These are the macros to use if you really need
* something whose input domain is a byte, and the locale isn't UTF-8; that is,
* where you normally would have to use things like bare isalnum().
*
* But most likely you should instead use the layer defined further below which
* has names like isALPHA_LC. They deal with larger-than-byte inputs, and
* UTF-8 locales.
*
* (Note, proper general operation of the bare libc functions requires you to
* cast to U8. These do that for you automatically.) */
# define WRAP_U8_LC_(c, classnum, posix) posix(c)
#define isU8_ALPHANUMERIC_LC(c) \
WRAP_U8_LC_((c), CC_ALPHANUMERIC_, is_posix_ALPHANUMERIC)
#define isU8_ALPHA_LC(c) WRAP_U8_LC_((c), CC_ALPHA_, is_posix_ALPHA)
#define isU8_ASCII_LC(c) WRAP_U8_LC_((c), CC_ASCII_, is_posix_ASCII)
#define isU8_BLANK_LC(c) WRAP_U8_LC_((c), CC_BLANK_, is_posix_BLANK)
#define isU8_CASED_LC(c) WRAP_U8_LC_((c), CC_CASED_, is_posix_CASED)
#define isU8_CNTRL_LC(c) WRAP_U8_LC_((c), CC_CNTRL_, is_posix_CNTRL)
#define isU8_DIGIT_LC(c) WRAP_U8_LC_((c), CC_DIGIT_, is_posix_DIGIT)
#define isU8_GRAPH_LC(c) WRAP_U8_LC_((c), CC_GRAPH_, is_posix_GRAPH)
#define isU8_IDFIRST_LC(c) WRAP_U8_LC_((c), CC_IDFIRST_, is_posix_IDFIRST)
#define isU8_LOWER_LC(c) WRAP_U8_LC_((c), CC_LOWER_, is_posix_LOWER)
#define isU8_PRINT_LC(c) WRAP_U8_LC_((c), CC_PRINT_, is_posix_PRINT)
#define isU8_PUNCT_LC(c) WRAP_U8_LC_((c), CC_PUNCT_, is_posix_PUNCT)
#define isU8_SPACE_LC(c) WRAP_U8_LC_((c), CC_SPACE_, is_posix_SPACE)
#define isU8_UPPER_LC(c) WRAP_U8_LC_((c), CC_UPPER_, is_posix_UPPER)
#define isU8_WORDCHAR_LC(c) WRAP_U8_LC_((c), CC_WORDCHAR_, is_posix_WORDCHAR)
#define isU8_XDIGIT_LC(c) WRAP_U8_LC_((c), CC_XDIGIT_, is_posix_XDIGIT)
#define toU8_LOWER_LC(c) WRAP_U8_LC_((c), CC_TOLOWER_, to_posix_LOWER)
#define toU8_UPPER_LC(c) WRAP_U8_LC_((c), CC_TOUPPER_, to_posix_UPPER)
#define toU8_FOLD_LC(c) toU8_LOWER_LC(c)
/* The definitions below use the ones above to create versions in which the
* input domain isn't restricted to bytes (though always returning false if the
* input doesn't fit in a byte), and to behave properly should the locale be
* UTF-8. These are the documented ones, suitable for general use (though
* toUPPER_LC and toFOLD_LC aren't documented because they need special
* handling to deal with SHARP S expanding to two characters). */
#define isASCII_LC(c) (FITS_IN_8_BITS(c) && isU8_ASCII_LC(c))
#define isALPHA_LC(c) generic_LC_(c, CC_ALPHA_, isU8_ALPHA_LC)
#define isALPHANUMERIC_LC(c) \
generic_LC_(c, CC_ALPHANUMERIC_, isU8_ALPHANUMERIC_LC)
#define isBLANK_LC(c) generic_LC_(c, CC_BLANK_, isU8_BLANK_LC)
#define isCASED_LC(c) generic_LC_(c, CC_CASED_, isU8_CASED_LC)
#define isCNTRL_LC(c) generic_LC_(c, CC_CNTRL_, isU8_CNTRL_LC)
#define isDIGIT_LC(c) generic_LC_(c, CC_DIGIT_, isU8_DIGIT_LC)
#define isGRAPH_LC(c) generic_LC_(c, CC_GRAPH_, isU8_GRAPH_LC)
#define isIDFIRST_LC(c) generic_LC_(c, CC_IDFIRST_, isU8_IDFIRST_LC)
#define isLOWER_LC(c) generic_LC_(c, CC_LOWER_, isU8_LOWER_LC)
#define isPRINT_LC(c) generic_LC_(c, CC_PRINT_, isU8_PRINT_LC)
#define isPUNCT_LC(c) generic_LC_(c, CC_PUNCT_, isU8_PUNCT_LC)
#define isSPACE_LC(c) generic_LC_(c, CC_SPACE_, isU8_SPACE_LC)
#define isUPPER_LC(c) generic_LC_(c, CC_UPPER_, isU8_UPPER_LC)
#define isWORDCHAR_LC(c) generic_LC_(c, CC_WORDCHAR_, isU8_WORDCHAR_LC)
#define isXDIGIT_LC(c) generic_LC_(c, CC_XDIGIT_, isU8_XDIGIT_LC)
#ifndef CTYPE256
# define toLOWER_LC(c) toLOWER_A(c)
# define toUPPER_LC(c) toUPPER_A(c)
# define toFOLD_LC(c) toFOLD_A(c)
#else
/* In the next three macros, the reason for using the PL_latin arrays is in
* case the system function is defective; it ensures uniform results that
* conform to the Unicode standard. */
/* This does not handle the anomalies in UTF-8 Turkic locales. */
# define toLOWER_LC(c) ((! FITS_IN_8_BITS(c)) \
? (c) \
: ((IN_UTF8_CTYPE_LOCALE) \
? PL_latin1_lc[ (U8) (c) ] \
: ((U8) toU8_LOWER_LC(c))))
/* In this macro, note that the result can be larger than a byte in a UTF-8
* locale. It returns a single value, so can't adequately return the upper
* case of LATIN SMALL LETTER SHARP S in a UTF-8 locale (which should be a
* string of two values "SS"); instead it asserts against that under
* DEBUGGING, and otherwise returns its input. It does not handle the
* anomalies in UTF-8 Turkic locales. */
# define toUPPER_LC(c) \
((! FITS_IN_8_BITS(c)) \
? (c) \
: ((! IN_UTF8_CTYPE_LOCALE) \
? ((U8) toU8_UPPER_LC(c)) \
: (UNLIKELY(((U8)(c)) == MICRO_SIGN) \
? GREEK_CAPITAL_LETTER_MU \
: ((UNLIKELY(((U8) (c)) == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS) \
? LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS \
: (UNLIKELY(((U8)(c)) == LATIN_SMALL_LETTER_SHARP_S) \
? (__ASSERT_(0) (c)) /* Fail on Sharp S in DEBUGGING */ \
: PL_mod_latin1_uc[ (U8) (c) ]))))))
/* In this macro, note that the result can be larger than a byte in a UTF-8
* locale. It returns a single value, so can't adequately return the fold case
* of LATIN SMALL LETTER SHARP S in a UTF-8 locale (which should be a string of
* two values "ss"); instead it asserts against that under DEBUGGING, and
* otherwise returns its input. It does not handle the anomalies in UTF-8
* Turkic locales */
# define toFOLD_LC(c) \
((UNLIKELY((c) == MICRO_SIGN) && IN_UTF8_CTYPE_LOCALE) \
? GREEK_SMALL_LETTER_MU \
: (__ASSERT_( ! IN_UTF8_CTYPE_LOCALE \
|| LIKELY((c) != LATIN_SMALL_LETTER_SHARP_S)) \
toLOWER_LC(c)))
#endif
#define isIDCONT(c) isWORDCHAR(c)
#define isIDCONT_A(c) isWORDCHAR_A(c)
#define isIDCONT_L1(c) isWORDCHAR_L1(c)
#define isIDCONT_LC(c) isWORDCHAR_LC(c)
#define isPSXSPC_LC(c) isSPACE_LC(c)
/* For internal core Perl use only: the base macros for defining macros like
* isALPHA_uvchr. 'c' is the code point to check. 'classnum' is the POSIX class
* number defined earlier in this file. generic_uvchr_() is used for POSIX
* classes where there is a macro or function 'above_latin1' that takes the
* single argument 'c' and returns the desired value. These exist for those
* classes which have simple definitions, avoiding the overhead of an inversion
* list binary search. generic_invlist_uvchr_() can be used
* for classes where that overhead is faster than a direct lookup.
* generic_uvchr_() won't compile if 'c' isn't unsigned, as it won't match the
* 'above_latin1' prototype. generic_isCC_() macro does bounds checking, so
* have duplicate checks here, so could create versions of the macros that
* don't, but experiments show that gcc optimizes them out anyway. */
/* Note that all ignore 'use bytes' */
#define generic_uvchr_(classnum, above_latin1, c) ((c) < 256 \
? generic_isCC_(c, classnum) \
: above_latin1(c))
#define generic_invlist_uvchr_(classnum, c) ((c) < 256 \
? generic_isCC_(c, classnum) \
: _is_uni_FOO(classnum, c))
#define isALPHA_uvchr(c) generic_invlist_uvchr_(CC_ALPHA_, c)
#define isALPHANUMERIC_uvchr(c) generic_invlist_uvchr_(CC_ALPHANUMERIC_, c)
#define isASCII_uvchr(c) isASCII(c)
#define isBLANK_uvchr(c) generic_uvchr_(CC_BLANK_, is_HORIZWS_cp_high, c)
#define isCNTRL_uvchr(c) isCNTRL_L1(c) /* All controls are in Latin1 */
#define isDIGIT_uvchr(c) generic_invlist_uvchr_(CC_DIGIT_, c)
#define isGRAPH_uvchr(c) generic_invlist_uvchr_(CC_GRAPH_, c)
#define isIDCONT_uvchr(c) \
generic_uvchr_(CC_WORDCHAR_, _is_uni_perl_idcont, c)
#define isIDFIRST_uvchr(c) \
generic_uvchr_(CC_IDFIRST_, _is_uni_perl_idstart, c)
#define isLOWER_uvchr(c) generic_invlist_uvchr_(CC_LOWER_, c)
#define isPRINT_uvchr(c) generic_invlist_uvchr_(CC_PRINT_, c)
#define isPUNCT_uvchr(c) generic_invlist_uvchr_(CC_PUNCT_, c)
#define isSPACE_uvchr(c) generic_uvchr_(CC_SPACE_, is_XPERLSPACE_cp_high, c)
#define isPSXSPC_uvchr(c) isSPACE_uvchr(c)
#define isUPPER_uvchr(c) generic_invlist_uvchr_(CC_UPPER_, c)
#define isVERTWS_uvchr(c) generic_uvchr_(CC_VERTSPACE_, is_VERTWS_cp_high, c)
#define isWORDCHAR_uvchr(c) generic_invlist_uvchr_(CC_WORDCHAR_, c)
#define isXDIGIT_uvchr(c) generic_uvchr_(CC_XDIGIT_, is_XDIGIT_cp_high, c)
#define toFOLD_uvchr(c,s,l) to_uni_fold(c,s,l)
#define toLOWER_uvchr(c,s,l) to_uni_lower(c,s,l)
#define toTITLE_uvchr(c,s,l) to_uni_title(c,s,l)
#define toUPPER_uvchr(c,s,l) to_uni_upper(c,s,l)
/* For backwards compatibility, even though '_uni' should mean official Unicode
* code points, in Perl it means native for those below 256 */
#define isALPHA_uni(c) isALPHA_uvchr(c)
#define isALPHANUMERIC_uni(c) isALPHANUMERIC_uvchr(c)
#define isASCII_uni(c) isASCII_uvchr(c)
#define isBLANK_uni(c) isBLANK_uvchr(c)
#define isCNTRL_uni(c) isCNTRL_uvchr(c)
#define isDIGIT_uni(c) isDIGIT_uvchr(c)
#define isGRAPH_uni(c) isGRAPH_uvchr(c)
#define isIDCONT_uni(c) isIDCONT_uvchr(c)
#define isIDFIRST_uni(c) isIDFIRST_uvchr(c)
#define isLOWER_uni(c) isLOWER_uvchr(c)
#define isPRINT_uni(c) isPRINT_uvchr(c)
#define isPUNCT_uni(c) isPUNCT_uvchr(c)
#define isSPACE_uni(c) isSPACE_uvchr(c)
#define isPSXSPC_uni(c) isPSXSPC_uvchr(c)
#define isUPPER_uni(c) isUPPER_uvchr(c)
#define isVERTWS_uni(c) isVERTWS_uvchr(c)
#define isWORDCHAR_uni(c) isWORDCHAR_uvchr(c)
#define isXDIGIT_uni(c) isXDIGIT_uvchr(c)
#define toFOLD_uni(c,s,l) toFOLD_uvchr(c,s,l)
#define toLOWER_uni(c,s,l) toLOWER_uvchr(c,s,l)
#define toTITLE_uni(c,s,l) toTITLE_uvchr(c,s,l)
#define toUPPER_uni(c,s,l) toUPPER_uvchr(c,s,l)
/* For internal core Perl use only: the base macros for defining macros like
* isALPHA_LC_uvchr. These are like isALPHA_LC, but the input can be any code
* point, not just 0-255. Like generic_uvchr_, there are two versions, one for
* simple class definitions; the other for more complex. These are like
* generic_uvchr_, so see it for more info. */
#define generic_LC_uvchr_(latin1, above_latin1, c) \
(c < 256 ? latin1(c) : above_latin1(c))
#define generic_LC_invlist_uvchr_(latin1, classnum, c) \
(c < 256 ? latin1(c) : _is_uni_FOO(classnum, c))
#define isALPHA_LC_uvchr(c) generic_LC_invlist_uvchr_(isALPHA_LC, CC_ALPHA_, c)
#define isALPHANUMERIC_LC_uvchr(c) generic_LC_invlist_uvchr_(isALPHANUMERIC_LC, \
CC_ALPHANUMERIC_, c)
#define isASCII_LC_uvchr(c) isASCII_LC(c)
#define isBLANK_LC_uvchr(c) generic_LC_uvchr_(isBLANK_LC, \
is_HORIZWS_cp_high, c)
#define isCNTRL_LC_uvchr(c) (c < 256 ? isCNTRL_LC(c) : 0)
#define isDIGIT_LC_uvchr(c) generic_LC_invlist_uvchr_(isDIGIT_LC, CC_DIGIT_, c)
#define isGRAPH_LC_uvchr(c) generic_LC_invlist_uvchr_(isGRAPH_LC, CC_GRAPH_, c)
#define isIDCONT_LC_uvchr(c) generic_LC_uvchr_(isIDCONT_LC, \
_is_uni_perl_idcont, c)
#define isIDFIRST_LC_uvchr(c) generic_LC_uvchr_(isIDFIRST_LC, \
_is_uni_perl_idstart, c)
#define isLOWER_LC_uvchr(c) generic_LC_invlist_uvchr_(isLOWER_LC, CC_LOWER_, c)
#define isPRINT_LC_uvchr(c) generic_LC_invlist_uvchr_(isPRINT_LC, CC_PRINT_, c)
#define isPSXSPC_LC_uvchr(c) isSPACE_LC_uvchr(c)
#define isPUNCT_LC_uvchr(c) generic_LC_invlist_uvchr_(isPUNCT_LC, CC_PUNCT_, c)
#define isSPACE_LC_uvchr(c) generic_LC_uvchr_(isSPACE_LC, \
is_XPERLSPACE_cp_high, c)
#define isUPPER_LC_uvchr(c) generic_LC_invlist_uvchr_(isUPPER_LC, CC_UPPER_, c)
#define isWORDCHAR_LC_uvchr(c) generic_LC_invlist_uvchr_(isWORDCHAR_LC, \
CC_WORDCHAR_, c)
#define isXDIGIT_LC_uvchr(c) generic_LC_uvchr_(isXDIGIT_LC, \
is_XDIGIT_cp_high, c)
#define isBLANK_LC_uni(c) isBLANK_LC_uvchr(UNI_TO_NATIVE(c))
/* The "_safe" macros make sure that we don't attempt to read beyond 'e', but
* they don't otherwise go out of their way to look for malformed UTF-8. If
* they can return accurate results without knowing if the input is otherwise
* malformed, they do so. For example isASCII is accurate in spite of any
* non-length malformations because it looks only at a single byte. Likewise
* isDIGIT looks just at the first byte for code points 0-255, as all UTF-8
* variant ones return FALSE. But, if the input has to be well-formed in order
* for the results to be accurate, the macros will test and if malformed will
* call a routine to die
*
* Except for toke.c, the macros do assume that e > p, asserting that on
* DEBUGGING builds. Much code that calls these depends on this being true,
* for other reasons. toke.c is treated specially as using the regular
* assertion breaks it in many ways. All strings that these operate on there
* are supposed to have an extra NUL character at the end, so that *e = \0. A
* bunch of code in toke.c assumes that this is true, so the assertion allows
* for that */
#ifdef PERL_IN_TOKE_C
# define _utf8_safe_assert(p,e) ((e) > (p) || ((e) == (p) && *(p) == '\0'))
#else
# define _utf8_safe_assert(p,e) ((e) > (p))
#endif
#define generic_utf8_safe_(classnum, p, e, above_latin1) \
((! _utf8_safe_assert(p, e)) \
? (_force_out_malformed_utf8_message((U8 *) (p), (U8 *) (e), 0, 1), 0)\
: (UTF8_IS_INVARIANT(*(p))) \
? generic_isCC_(*(p), classnum) \
: (UTF8_IS_DOWNGRADEABLE_START(*(p)) \
? ((LIKELY((e) - (p) > 1 && UTF8_IS_CONTINUATION(*((p)+1)))) \
? generic_isCC_(EIGHT_BIT_UTF8_TO_NATIVE(*(p), *((p)+1 )), \
classnum) \
: (_force_out_malformed_utf8_message( \
(U8 *) (p), (U8 *) (e), 0, 1), 0)) \
: above_latin1))
/* Like the above, but calls 'above_latin1(p)' to get the utf8 value.
* 'above_latin1' can be a macro */
#define generic_func_utf8_safe_(classnum, above_latin1, p, e) \
generic_utf8_safe_(classnum, p, e, above_latin1(p, e))
#define generic_non_invlist_utf8_safe_(classnum, above_latin1, p, e) \
generic_utf8_safe_(classnum, p, e, \
(UNLIKELY((e) - (p) < UTF8SKIP(p)) \
? (_force_out_malformed_utf8_message( \
(U8 *) (p), (U8 *) (e), 0, 1), 0) \
: above_latin1(p)))
/* Like the above, but passes classnum to _isFOO_utf8(), instead of having an
* 'above_latin1' parameter */
#define generic_invlist_utf8_safe_(classnum, p, e) \
generic_utf8_safe_(classnum, p, e, _is_utf8_FOO(classnum, p, e))
/* Like the above, but should be used only when it is known that there are no
* characters in the upper-Latin1 range (128-255 on ASCII platforms) which the
* class is TRUE for. Hence it can skip the tests for this range.
* 'above_latin1' should include its arguments */
#define generic_utf8_safe_no_upper_latin1_(classnum, p, e, above_latin1) \
(__ASSERT_(_utf8_safe_assert(p, e)) \
(isASCII(*(p))) \
? generic_isCC_(*(p), classnum) \
: (UTF8_IS_DOWNGRADEABLE_START(*(p))) \
? 0 /* Note that doesn't check validity for latin1 */ \
: above_latin1)
#define isALPHA_utf8(p, e) isALPHA_utf8_safe(p, e)
#define isALPHANUMERIC_utf8(p, e) isALPHANUMERIC_utf8_safe(p, e)
#define isASCII_utf8(p, e) isASCII_utf8_safe(p, e)
#define isBLANK_utf8(p, e) isBLANK_utf8_safe(p, e)
#define isCNTRL_utf8(p, e) isCNTRL_utf8_safe(p, e)
#define isDIGIT_utf8(p, e) isDIGIT_utf8_safe(p, e)
#define isGRAPH_utf8(p, e) isGRAPH_utf8_safe(p, e)
#define isIDCONT_utf8(p, e) isIDCONT_utf8_safe(p, e)
#define isIDFIRST_utf8(p, e) isIDFIRST_utf8_safe(p, e)
#define isLOWER_utf8(p, e) isLOWER_utf8_safe(p, e)
#define isPRINT_utf8(p, e) isPRINT_utf8_safe(p, e)
#define isPSXSPC_utf8(p, e) isPSXSPC_utf8_safe(p, e)
#define isPUNCT_utf8(p, e) isPUNCT_utf8_safe(p, e)
#define isSPACE_utf8(p, e) isSPACE_utf8_safe(p, e)
#define isUPPER_utf8(p, e) isUPPER_utf8_safe(p, e)
#define isVERTWS_utf8(p, e) isVERTWS_utf8_safe(p, e)
#define isWORDCHAR_utf8(p, e) isWORDCHAR_utf8_safe(p, e)
#define isXDIGIT_utf8(p, e) isXDIGIT_utf8_safe(p, e)
#define isALPHA_utf8_safe(p, e) generic_invlist_utf8_safe_(CC_ALPHA_, p, e)
#define isALPHANUMERIC_utf8_safe(p, e) \
generic_invlist_utf8_safe_(CC_ALPHANUMERIC_, p, e)
#define isASCII_utf8_safe(p, e) \
/* Because ASCII is invariant under utf8, the non-utf8 macro \
* works */ \
(__ASSERT_(_utf8_safe_assert(p, e)) isASCII(*(p)))
#define isBLANK_utf8_safe(p, e) \
generic_non_invlist_utf8_safe_(CC_BLANK_, is_HORIZWS_high, p, e)
#ifdef EBCDIC
/* Because all controls are UTF-8 invariants in EBCDIC, we can use this
* more efficient macro instead of the more general one */
# define isCNTRL_utf8_safe(p, e) \
(__ASSERT_(_utf8_safe_assert(p, e)) isCNTRL_L1(*(p)))
#else
# define isCNTRL_utf8_safe(p, e) generic_utf8_safe_(CC_CNTRL_, p, e, 0)
#endif
#define isDIGIT_utf8_safe(p, e) \
generic_utf8_safe_no_upper_latin1_(CC_DIGIT_, p, e, \
_is_utf8_FOO(CC_DIGIT_, p, e))
#define isGRAPH_utf8_safe(p, e) generic_invlist_utf8_safe_(CC_GRAPH_, p, e)
#define isIDCONT_utf8_safe(p, e) generic_func_utf8_safe_(CC_WORDCHAR_, \
_is_utf8_perl_idcont, p, e)
/* To prevent S_scan_word in toke.c from hanging, we have to make sure that
* IDFIRST is an alnum. See
* https://github.com/Perl/perl5/issues/10275 for more detail than you
* ever wanted to know about. (In the ASCII range, there isn't a difference.)
* This used to be not the XID version, but we decided to go with the more
* modern Unicode definition */
#define isIDFIRST_utf8_safe(p, e) \
generic_func_utf8_safe_(CC_IDFIRST_, \
_is_utf8_perl_idstart, (U8 *) (p), (U8 *) (e))
#define isLOWER_utf8_safe(p, e) generic_invlist_utf8_safe_(CC_LOWER_, p, e)
#define isPRINT_utf8_safe(p, e) generic_invlist_utf8_safe_(CC_PRINT_, p, e)
#define isPSXSPC_utf8_safe(p, e) isSPACE_utf8_safe(p, e)
#define isPUNCT_utf8_safe(p, e) generic_invlist_utf8_safe_(CC_PUNCT_, p, e)
#define isSPACE_utf8_safe(p, e) \
generic_non_invlist_utf8_safe_(CC_SPACE_, is_XPERLSPACE_high, p, e)
#define isUPPER_utf8_safe(p, e) generic_invlist_utf8_safe_(CC_UPPER_, p, e)
#define isVERTWS_utf8_safe(p, e) \
generic_non_invlist_utf8_safe_(CC_VERTSPACE_, is_VERTWS_high, p, e)
#define isWORDCHAR_utf8_safe(p, e) \
generic_invlist_utf8_safe_(CC_WORDCHAR_, p, e)
#define isXDIGIT_utf8_safe(p, e) \
generic_utf8_safe_no_upper_latin1_(CC_XDIGIT_, p, e, \
(UNLIKELY((e) - (p) < UTF8SKIP(p)) \
? (_force_out_malformed_utf8_message( \
(U8 *) (p), (U8 *) (e), 0, 1), 0) \
: is_XDIGIT_high(p)))
#define toFOLD_utf8(p,e,s,l) toFOLD_utf8_safe(p,e,s,l)
#define toLOWER_utf8(p,e,s,l) toLOWER_utf8_safe(p,e,s,l)
#define toTITLE_utf8(p,e,s,l) toTITLE_utf8_safe(p,e,s,l)
#define toUPPER_utf8(p,e,s,l) toUPPER_utf8_safe(p,e,s,l)
/* For internal core use only, subject to change */
#define _toFOLD_utf8_flags(p,e,s,l,f) _to_utf8_fold_flags (p,e,s,l,f)
#define _toLOWER_utf8_flags(p,e,s,l,f) _to_utf8_lower_flags(p,e,s,l,f)
#define _toTITLE_utf8_flags(p,e,s,l,f) _to_utf8_title_flags(p,e,s,l,f)
#define _toUPPER_utf8_flags(p,e,s,l,f) _to_utf8_upper_flags(p,e,s,l,f)
#define toFOLD_utf8_safe(p,e,s,l) _toFOLD_utf8_flags(p,e,s,l, FOLD_FLAGS_FULL)
#define toLOWER_utf8_safe(p,e,s,l) _toLOWER_utf8_flags(p,e,s,l, 0)
#define toTITLE_utf8_safe(p,e,s,l) _toTITLE_utf8_flags(p,e,s,l, 0)
#define toUPPER_utf8_safe(p,e,s,l) _toUPPER_utf8_flags(p,e,s,l, 0)
#define isALPHA_LC_utf8(p, e) isALPHA_LC_utf8_safe(p, e)
#define isALPHANUMERIC_LC_utf8(p, e) isALPHANUMERIC_LC_utf8_safe(p, e)
#define isASCII_LC_utf8(p, e) isASCII_LC_utf8_safe(p, e)
#define isBLANK_LC_utf8(p, e) isBLANK_LC_utf8_safe(p, e)
#define isCNTRL_LC_utf8(p, e) isCNTRL_LC_utf8_safe(p, e)
#define isDIGIT_LC_utf8(p, e) isDIGIT_LC_utf8_safe(p, e)
#define isGRAPH_LC_utf8(p, e) isGRAPH_LC_utf8_safe(p, e)
#define isIDCONT_LC_utf8(p, e) isIDCONT_LC_utf8_safe(p, e)
#define isIDFIRST_LC_utf8(p, e) isIDFIRST_LC_utf8_safe(p, e)
#define isLOWER_LC_utf8(p, e) isLOWER_LC_utf8_safe(p, e)
#define isPRINT_LC_utf8(p, e) isPRINT_LC_utf8_safe(p, e)
#define isPSXSPC_LC_utf8(p, e) isPSXSPC_LC_utf8_safe(p, e)
#define isPUNCT_LC_utf8(p, e) isPUNCT_LC_utf8_safe(p, e)
#define isSPACE_LC_utf8(p, e) isSPACE_LC_utf8_safe(p, e)
#define isUPPER_LC_utf8(p, e) isUPPER_LC_utf8_safe(p, e)
#define isWORDCHAR_LC_utf8(p, e) isWORDCHAR_LC_utf8_safe(p, e)
#define isXDIGIT_LC_utf8(p, e) isXDIGIT_LC_utf8_safe(p, e)
/* For internal core Perl use only: the base macros for defining macros like
* isALPHA_LC_utf8_safe. These are like generic_utf8_, but if the first code
* point in 'p' is within the 0-255 range, it uses locale rules from the
* passed-in 'macro' parameter */
#define generic_LC_utf8_safe_(macro, p, e, above_latin1) \
(__ASSERT_(_utf8_safe_assert(p, e)) \
(UTF8_IS_INVARIANT(*(p))) \
? macro(*(p)) \
: (UTF8_IS_DOWNGRADEABLE_START(*(p)) \
? ((LIKELY((e) - (p) > 1 && UTF8_IS_CONTINUATION(*((p)+1)))) \
? macro(EIGHT_BIT_UTF8_TO_NATIVE(*(p), *((p)+1))) \
: (_force_out_malformed_utf8_message( \
(U8 *) (p), (U8 *) (e), 0, 1), 0)) \
: above_latin1))
#define generic_LC_invlist_utf8_safe_(macro, classnum, p, e) \
generic_LC_utf8_safe_(macro, p, e, \
_is_utf8_FOO(classnum, p, e))
#define generic_LC_func_utf8_safe_(macro, above_latin1, p, e) \
generic_LC_utf8_safe_(macro, p, e, above_latin1(p, e))
#define generic_LC_non_invlist_utf8_safe_(classnum, above_latin1, p, e) \
generic_LC_utf8_safe_(classnum, p, e, \
(UNLIKELY((e) - (p) < UTF8SKIP(p)) \
? (_force_out_malformed_utf8_message( \
(U8 *) (p), (U8 *) (e), 0, 1), 0) \
: above_latin1(p)))
#define isALPHANUMERIC_LC_utf8_safe(p, e) \
generic_LC_invlist_utf8_safe_(isALPHANUMERIC_LC, \
CC_ALPHANUMERIC_, p, e)
#define isALPHA_LC_utf8_safe(p, e) \
generic_LC_invlist_utf8_safe_(isALPHA_LC, CC_ALPHA_, p, e)
#define isASCII_LC_utf8_safe(p, e) \
(__ASSERT_(_utf8_safe_assert(p, e)) isASCII_LC(*(p)))
#define isBLANK_LC_utf8_safe(p, e) \
generic_LC_non_invlist_utf8_safe_(isBLANK_LC, is_HORIZWS_high, p, e)
#define isCNTRL_LC_utf8_safe(p, e) \
generic_LC_utf8_safe_(isCNTRL_LC, p, e, 0)
#define isDIGIT_LC_utf8_safe(p, e) \
generic_LC_invlist_utf8_safe_(isDIGIT_LC, CC_DIGIT_, p, e)
#define isGRAPH_LC_utf8_safe(p, e) \
generic_LC_invlist_utf8_safe_(isGRAPH_LC, CC_GRAPH_, p, e)
#define isIDCONT_LC_utf8_safe(p, e) \
generic_LC_func_utf8_safe_(isIDCONT_LC, \
_is_utf8_perl_idcont, p, e)
#define isIDFIRST_LC_utf8_safe(p, e) \
generic_LC_func_utf8_safe_(isIDFIRST_LC, \
_is_utf8_perl_idstart, p, e)
#define isLOWER_LC_utf8_safe(p, e) \
generic_LC_invlist_utf8_safe_(isLOWER_LC, CC_LOWER_, p, e)
#define isPRINT_LC_utf8_safe(p, e) \
generic_LC_invlist_utf8_safe_(isPRINT_LC, CC_PRINT_, p, e)
#define isPSXSPC_LC_utf8_safe(p, e) isSPACE_LC_utf8_safe(p, e)
#define isPUNCT_LC_utf8_safe(p, e) \
generic_LC_invlist_utf8_safe_(isPUNCT_LC, CC_PUNCT_, p, e)
#define isSPACE_LC_utf8_safe(p, e) \
generic_LC_non_invlist_utf8_safe_(isSPACE_LC, is_XPERLSPACE_high, p, e)
#define isUPPER_LC_utf8_safe(p, e) \
generic_LC_invlist_utf8_safe_(isUPPER_LC, CC_UPPER_, p, e)
#define isWORDCHAR_LC_utf8_safe(p, e) \
generic_LC_invlist_utf8_safe_(isWORDCHAR_LC, CC_WORDCHAR_, p, e)
#define isXDIGIT_LC_utf8_safe(p, e) \
generic_LC_non_invlist_utf8_safe_(isXDIGIT_LC, is_XDIGIT_high, p, e)
/* Macros for backwards compatibility and for completeness when the ASCII and
* Latin1 values are identical */
#define isALPHAU(c) isALPHA_L1(c)
#define isDIGIT_L1(c) isDIGIT_A(c)
#define isOCTAL(c) isOCTAL_A(c)
#define isOCTAL_L1(c) isOCTAL_A(c)
#define isXDIGIT_L1(c) isXDIGIT_A(c)
#define isALNUM(c) isWORDCHAR(c)
#define isALNUM_A(c) isALNUM(c)
#define isALNUMU(c) isWORDCHAR_L1(c)
#define isALNUM_LC(c) isWORDCHAR_LC(c)
#define isALNUM_uni(c) isWORDCHAR_uni(c)
#define isALNUM_LC_uvchr(c) isWORDCHAR_LC_uvchr(c)
#define isALNUM_utf8(p,e) isWORDCHAR_utf8(p,e)
#define isALNUM_utf8_safe(p,e) isWORDCHAR_utf8_safe(p,e)
#define isALNUM_LC_utf8(p,e)isWORDCHAR_LC_utf8(p,e)
#define isALNUM_LC_utf8_safe(p,e)isWORDCHAR_LC_utf8_safe(p,e)
#define isALNUMC_A(c) isALPHANUMERIC_A(c) /* Mnemonic: "C's alnum" */
#define isALNUMC_L1(c) isALPHANUMERIC_L1(c)
#define isALNUMC(c) isALPHANUMERIC(c)
#define isALNUMC_LC(c) isALPHANUMERIC_LC(c)
#define isALNUMC_uni(c) isALPHANUMERIC_uni(c)
#define isALNUMC_LC_uvchr(c) isALPHANUMERIC_LC_uvchr(c)
#define isALNUMC_utf8(p,e) isALPHANUMERIC_utf8(p,e)
#define isALNUMC_utf8_safe(p,e) isALPHANUMERIC_utf8_safe(p,e)
#define isALNUMC_LC_utf8_safe(p,e) isALPHANUMERIC_LC_utf8_safe(p,e)
/* On EBCDIC platforms, CTRL-@ is 0, CTRL-A is 1, etc, just like on ASCII,
* except that they don't necessarily mean the same characters, e.g. CTRL-D is
* 4 on both systems, but that is EOT on ASCII; ST on EBCDIC.
* '?' is special-cased on EBCDIC to APC, which is the control there that is
* the outlier from the block that contains the other controls, just like
* toCTRL('?') on ASCII yields DEL, the control that is the outlier from the C0
* block. If it weren't special cased, it would yield a non-control.
* The conversion works both ways, so toCTRL('D') is 4, and toCTRL(4) is D,
* etc. */
#ifndef EBCDIC
# define toCTRL(c) (__ASSERT_(FITS_IN_8_BITS(c)) toUPPER(((U8)(c))) ^ 64)
#else
# define toCTRL(c) (__ASSERT_(FITS_IN_8_BITS(c)) \
((isPRINT_A(c)) \
? (UNLIKELY((c) == '?') \
? QUESTION_MARK_CTRL \
: (NATIVE_TO_LATIN1(toUPPER((U8) (c))) ^ 64)) \
: (UNLIKELY((c) == QUESTION_MARK_CTRL) \
? '?' \
: (LATIN1_TO_NATIVE(((U8) (c)) ^ 64)))))
#endif
/*
=for apidoc Ay||line_t
The typedef to use to declare variables that are to hold line numbers.
=cut
Line numbers are unsigned, 32 bits.
*/
typedef U32 line_t;
#define LINE_Tf U32uf
#define NOLINE ((line_t) 4294967295UL) /* = FFFFFFFF */
/* Helpful alias for version prescan */
#define is_LAX_VERSION(a,b) \
(a != Perl_prescan_version(aTHX_ a, FALSE, b, NULL, NULL, NULL, NULL))
#define is_STRICT_VERSION(a,b) \
(a != Perl_prescan_version(aTHX_ a, TRUE, b, NULL, NULL, NULL, NULL))
#define BADVERSION(a,b,c) \
if (b) { \
*b = c; \
} \
return a;
/* Converts a character KNOWN to represent a hexadecimal digit (0-9, A-F, or
* a-f) to its numeric value without using any branches. The input is
* validated only by an assert() in DEBUGGING builds.
*
* It works by right shifting and isolating the bit that is 0 for the digits,
* and 1 for at least the alphas A-F, a-f. The bit is shifted to the ones
* position, and then to the eights position. Both are added together to form
* 0 if the input is '0'-'9' and to form 9 if alpha. This is added to the
* final four bits of the input to form the correct value. */
#define XDIGIT_VALUE(c) (__ASSERT_(isXDIGIT(c)) \
((NATIVE_TO_LATIN1(c) >> 6) & 1) /* 1 if alpha; 0 if not */ \
+ ((NATIVE_TO_LATIN1(c) >> 3) & 8) /* 8 if alpha; 0 if not */ \
+ ((c) & 0xF)) /* 0-9 if input valid hex digit */
/* The argument is a string pointer, which is advanced. */
#define READ_XDIGIT(s) ((s)++, XDIGIT_VALUE(*((s) - 1)))
/* Converts a character known to represent an octal digit (0-7) to its numeric
* value. The input is validated only by an assert() in DEBUGGING builds. In
* both ASCII and EBCDIC the last 3 bits of the octal digits range from 0-7. */
#define OCTAL_VALUE(c) (__ASSERT_(isOCTAL(c)) (7 & (c)))
/* Efficiently returns a boolean as to if two native characters are equivalent
* case-insensitively. At least one of the characters must be one of [A-Za-z];
* the ALPHA in the name is to remind you of that. This is asserted() in
* DEBUGGING builds. Because [A-Za-z] are invariant under UTF-8, this macro
* works (on valid input) for both non- and UTF-8-encoded bytes.
*
* When one of the inputs is a compile-time constant and gets folded by the
* compiler, this reduces to an AND and a TEST. On both EBCDIC and ASCII
* machines, 'A' and 'a' differ by a single bit; the same with the upper and
* lower case of all other ASCII-range alphabetics. On ASCII platforms, they
* are 32 apart; on EBCDIC, they are 64. At compile time, this uses an
* exclusive 'or' to find that bit and then inverts it to form a mask, with
* just a single 0, in the bit position where the upper- and lowercase differ.
* */
#define isALPHA_FOLD_EQ(c1, c2) \
(__ASSERT_(isALPHA_A(c1) || isALPHA_A(c2)) \
((c1) & ~('A' ^ 'a')) == ((c2) & ~('A' ^ 'a')))
#define isALPHA_FOLD_NE(c1, c2) (! isALPHA_FOLD_EQ((c1), (c2)))
/*
=for apidoc_section $memory
=for apidoc Am|void|Newx|void* ptr|int nitems|type
=for apidoc_item |void*|safemalloc|size_t size
The XSUB-writer's interface to the C C function.
Memory obtained by this should B be freed with L"Safefree">.
In 5.9.3, Newx() and friends replace the older New() API, and drops
the first parameter, I, a debug aid which allowed callers to identify
themselves. This aid has been superseded by a new build option,
PERL_MEM_LOG (see L). The older API is still
there for use in XS modules supporting older perls.
=for apidoc Am|void|Newxc|void* ptr|int nitems|type|cast
The XSUB-writer's interface to the C C function, with
cast. See also C>.
Memory obtained by this should B be freed with L"Safefree">.
=for apidoc Am|void|Newxz|void* ptr|int nitems|type
=for apidoc_item |void*|safecalloc|size_t nitems|size_t item_size
The XSUB-writer's interface to the C C function. The allocated
memory is zeroed with C. See also C>.
Memory obtained by this should B be freed with L"Safefree">.
=for apidoc Am|void|Renew|void* ptr|int nitems|type
=for apidoc_item |void*|saferealloc|void *ptr|size_t size
The XSUB-writer's interface to the C C function.
Memory obtained by this should B be freed with L"Safefree">.
=for apidoc Am|void|Renewc|void* ptr|int nitems|type|cast
The XSUB-writer's interface to the C C function, with
cast.
Memory obtained by this should B be freed with L"Safefree">.
=for apidoc Am|void|Safefree|void* ptr
The XSUB-writer's interface to the C C function.
This should B be used on memory obtained using L"Newx"> and friends.
=for apidoc_section $string
=for apidoc Am|void |Move |void* src|void* dest|int nitems|type
=for apidoc_item |void *|MoveD|void* src|void* dest|int nitems|type
The XSUB-writer's interface to the C C function. The C is the
source, C is the destination, C is the number of items, and
C is the type. Can do overlapping moves. See also C>.
C is like C but returns C. Useful
for encouraging compilers to tail-call
optimise.
=for apidoc Am|void |Copy |void* src|void* dest|int nitems|type
=for apidoc_item |void *|CopyD|void* src|void* dest|int nitems|type
The XSUB-writer's interface to the C C function. The C is the
source, C is the destination, C is the number of items, and
C is the type. May fail on overlapping copies. See also C>.
C is like C but returns C. Useful
for encouraging compilers to tail-call
optimise.
=for apidoc Am|void |NewCopy |void* src|void* dest|int nitems|type
Combines Newx() and Copy() into a single macro. Dest will be allocated
using Newx() and then src will be copied into it.
=for apidoc Am|void |Zero |void* dest|int nitems|type
=for apidoc_item |void *|ZeroD|void* dest|int nitems|type
The XSUB-writer's interface to the C C function. The C is the
destination, C is the number of items, and C is the type.
C is like C but returns C. Useful
for encouraging compilers to tail-call
optimise.
=for apidoc_section $utility
=for apidoc Amu|void|StructCopy|type *src|type *dest|type
This is an architecture-independent macro to copy one structure to another.
=for apidoc Am|void|PoisonWith|void* dest|int nitems|type|U8 byte
Fill up memory with a byte pattern (a byte repeated over and over
again) that hopefully catches attempts to access uninitialized memory.
=for apidoc Am|void|PoisonNew|void* dest|int nitems|type
PoisonWith(0xAB) for catching access to allocated but uninitialized memory.
=for apidoc Am|void|PoisonFree|void* dest|int nitems|type
PoisonWith(0xEF) for catching access to freed memory.
=for apidoc Am|void|Poison|void* dest|int nitems|type
PoisonWith(0xEF) for catching access to freed memory.
=cut */
/* Maintained for backwards-compatibility only. Use newSV() instead. */
#ifndef PERL_CORE
#define NEWSV(x,len) newSV(len)
#endif
#define MEM_SIZE_MAX ((MEM_SIZE)-1)
#define _PERL_STRLEN_ROUNDUP_UNCHECKED(n) (((n) - 1 + PERL_STRLEN_ROUNDUP_QUANTUM) & ~((MEM_SIZE)PERL_STRLEN_ROUNDUP_QUANTUM - 1))
#ifdef PERL_MALLOC_WRAP
/* This expression will be constant-folded at compile time. It checks
* whether or not the type of the count n is so small (e.g. U8 or U16, or
* U32 on 64-bit systems) that there's no way a wrap-around could occur.
* As well as avoiding the need for a run-time check in some cases, it's
* designed to avoid compiler warnings like:
* comparison is always false due to limited range of data type
* It's mathematically equivalent to
* max(n) * sizeof(t) > MEM_SIZE_MAX
*/
# define _MEM_WRAP_NEEDS_RUNTIME_CHECK(n,t) \
( sizeof(MEM_SIZE) < sizeof(n) \
|| sizeof(t) > ((MEM_SIZE)1 << 8*(sizeof(MEM_SIZE) - sizeof(n))))
/* This is written in a slightly odd way to avoid various spurious
* compiler warnings. We *want* to write the expression as
* _MEM_WRAP_NEEDS_RUNTIME_CHECK(n,t) && (n > C)
* (for some compile-time constant C), but even when the LHS
* constant-folds to false at compile-time, g++ insists on emitting
* warnings about the RHS (e.g. "comparison is always false"), so instead
* we write it as
*
* (cond ? n : X) > C
*
* where X is a constant with X > C always false. Choosing a value for X
* is tricky. If 0, some compilers will complain about 0 > C always being
* false; if 1, Coverity complains when n happens to be the constant value
* '1', that cond ? 1 : 1 has the same value on both branches; so use C
* for X and hope that nothing else whines.
*/
# define _MEM_WRAP_WILL_WRAP(n,t) \
((_MEM_WRAP_NEEDS_RUNTIME_CHECK(n,t) ? (MEM_SIZE)(n) : \
MEM_SIZE_MAX/sizeof(t)) > MEM_SIZE_MAX/sizeof(t))
# define MEM_WRAP_CHECK(n,t) \
(void)(UNLIKELY(_MEM_WRAP_WILL_WRAP(n,t)) \
&& (croak_memory_wrap(),0))
# define MEM_WRAP_CHECK_1(n,t,a) \
(void)(UNLIKELY(_MEM_WRAP_WILL_WRAP(n,t)) \
&& (Perl_croak_nocontext("%s",(a)),0))
/* "a" arg must be a string literal */
# define MEM_WRAP_CHECK_s(n,t,a) \
( (void) (UNLIKELY(_MEM_WRAP_WILL_WRAP(n,t)) \
&& (Perl_croak_nocontext(ASSERT_IS_LITERAL(a)), 0)))
# define MEM_WRAP_CHECK_(n,t) MEM_WRAP_CHECK(n,t),
# define PERL_STRLEN_ROUNDUP(n) ((void)(((n) > MEM_SIZE_MAX - 2 * PERL_STRLEN_ROUNDUP_QUANTUM) ? (croak_memory_wrap(),0) : 0), _PERL_STRLEN_ROUNDUP_UNCHECKED(n))
#else
# define MEM_WRAP_CHECK(n,t)
# define MEM_WRAP_CHECK_1(n,t,a)
# define MEM_WRAP_CHECK_s(n,t,a)
# define MEM_WRAP_CHECK_(n,t)
# define PERL_STRLEN_ROUNDUP(n) _PERL_STRLEN_ROUNDUP_UNCHECKED(n)
#endif
#ifdef PERL_MEM_LOG
/*
* If PERL_MEM_LOG is defined, all Newx()s, Renew()s, and Safefree()s
* go through functions, which are handy for debugging breakpoints, but
* which more importantly get the immediate calling environment (file and
* line number, and C function name if available) passed in. This info can
* then be used for logging the calls, for which one gets a sample
* implementation unless -DPERL_MEM_LOG_NOIMPL is also defined.
*
* Known problems:
* - not all memory allocs get logged, only those
* that go through Newx() and derivatives (while all
* Safefrees do get logged)
* - __FILE__ and __LINE__ do not work everywhere
* - __func__ or __FUNCTION__ even less so
* - I think more goes on after the perlio frees but
* the thing is that STDERR gets closed (as do all
* the file descriptors)
* - no deeper calling stack than the caller of the Newx()
* or the kind, but do I look like a C reflection/introspection
* utility to you?
* - the function prototypes for the logging functions
* probably should maybe be somewhere else than handy.h
* - one could consider inlining (macrofying) the logging
* for speed, but I am too lazy
* - one could imagine recording the allocations in a hash,
* (keyed by the allocation address?), and maintain that
* through reallocs and frees, but how to do that without
* any News() happening...?
* - lots of -Ddefines to get useful/controllable output
* - lots of ENV reads
*/
# ifdef PERL_CORE
# ifndef PERL_MEM_LOG_NOIMPL
enum mem_log_type {
MLT_ALLOC,
MLT_REALLOC,
MLT_FREE,
MLT_NEW_SV,
MLT_DEL_SV
};
# endif
# endif
#endif
#ifdef PERL_MEM_LOG
#define MEM_LOG_ALLOC(n,t,a) Perl_mem_log_alloc(n,sizeof(t),STRINGIFY(t),a,__FILE__,__LINE__,FUNCTION__)
#define MEM_LOG_REALLOC(n,t,v,a) Perl_mem_log_realloc(n,sizeof(t),STRINGIFY(t),v,a,__FILE__,__LINE__,FUNCTION__)
#define MEM_LOG_FREE(a) Perl_mem_log_free(a,__FILE__,__LINE__,FUNCTION__)
#endif
#ifndef MEM_LOG_ALLOC
#define MEM_LOG_ALLOC(n,t,a) (a)
#endif
#ifndef MEM_LOG_REALLOC
#define MEM_LOG_REALLOC(n,t,v,a) (a)
#endif
#ifndef MEM_LOG_FREE
#define MEM_LOG_FREE(a) (a)
#endif
#define Newx(v,n,t) (v = (MEM_WRAP_CHECK_(n,t) (t*)MEM_LOG_ALLOC(n,t,safemalloc((MEM_SIZE)((n)*sizeof(t))))))
#define Newxc(v,n,t,c) (v = (MEM_WRAP_CHECK_(n,t) (c*)MEM_LOG_ALLOC(n,t,safemalloc((MEM_SIZE)((n)*sizeof(t))))))
#define Newxz(v,n,t) (v = (MEM_WRAP_CHECK_(n,t) (t*)MEM_LOG_ALLOC(n,t,safecalloc((n),sizeof(t)))))
#ifndef PERL_CORE
/* pre 5.9.x compatibility */
#define New(x,v,n,t) Newx(v,n,t)
#define Newc(x,v,n,t,c) Newxc(v,n,t,c)
#define Newz(x,v,n,t) Newxz(v,n,t)
#endif
#define Renew(v,n,t) \
(v = (MEM_WRAP_CHECK_(n,t) (t*)MEM_LOG_REALLOC(n,t,v,saferealloc((Malloc_t)(v),(MEM_SIZE)((n)*sizeof(t))))))
#define Renewc(v,n,t,c) \
(v = (MEM_WRAP_CHECK_(n,t) (c*)MEM_LOG_REALLOC(n,t,v,saferealloc((Malloc_t)(v),(MEM_SIZE)((n)*sizeof(t))))))
#ifdef PERL_POISON
#define Safefree(d) \
((d) ? (void)(safefree(MEM_LOG_FREE((Malloc_t)(d))), Poison(&(d), 1, Malloc_t)) : (void) 0)
#else
#define Safefree(d) safefree(MEM_LOG_FREE((Malloc_t)(d)))
#endif
/* assert that a valid ptr has been supplied - use this instead of assert(ptr) *
* as it handles cases like constant string arguments without throwing warnings *
* the cast is required, as is the inequality check, to avoid warnings */
#define perl_assert_ptr(p) assert( ((void*)(p)) != 0 )
#define Move(s,d,n,t) (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), perl_assert_ptr(s), (void)memmove((char*)(d),(const char*)(s), (n) * sizeof(t)))
#define Copy(s,d,n,t) (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), perl_assert_ptr(s), (void)memcpy((char*)(d),(const char*)(s), (n) * sizeof(t)))
#define Zero(d,n,t) (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), (void)memzero((char*)(d), (n) * sizeof(t)))
/* Like above, but returns a pointer to 'd' */
#define MoveD(s,d,n,t) (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), perl_assert_ptr(s), memmove((char*)(d),(const char*)(s), (n) * sizeof(t)))
#define CopyD(s,d,n,t) (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), perl_assert_ptr(s), memcpy((char*)(d),(const char*)(s), (n) * sizeof(t)))
#define ZeroD(d,n,t) (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), memzero((char*)(d), (n) * sizeof(t)))
#define NewCopy(s,d,n,t) STMT_START { \
Newx(d,n,t); \
Copy(s,d,n,t); \
} STMT_END
#define PoisonWith(d,n,t,b) (MEM_WRAP_CHECK_(n,t) (void)memset((char*)(d), (U8)(b), (n) * sizeof(t)))
#define PoisonNew(d,n,t) PoisonWith(d,n,t,0xAB)
#define PoisonFree(d,n,t) PoisonWith(d,n,t,0xEF)
#define Poison(d,n,t) PoisonFree(d,n,t)
#ifdef PERL_POISON
# define PERL_POISON_EXPR(x) x
#else
# define PERL_POISON_EXPR(x)
#endif
/* Shallow copy */
#define StructCopy(s,d,t) (*((t*)(d)) = *((t*)(s)))
/*
=for apidoc_section $utility
=for apidoc Am|STRLEN|C_ARRAY_LENGTH|void *a
Returns the number of elements in the input C array (so you want your
zero-based indices to be less than but not equal to).
=for apidoc Am|void *|C_ARRAY_END|void *a
Returns a pointer to one element past the final element of the input C array.
=cut
C_ARRAY_END is one past the last: half-open/half-closed range, not
last-inclusive range.
*/
#define C_ARRAY_LENGTH(a) (sizeof(a)/sizeof((a)[0]))
#define C_ARRAY_END(a) ((a) + C_ARRAY_LENGTH(a))
#if defined(PERL_CORE) || defined(PERL_EXT_RE_BUILD)
/* strlen() of a literal string constant. Restricting this to core, in part
* because it can generate compiler warnings about comparing unlike signs */
# define STRLENs(s) (sizeof("" s "") - 1)
#endif
#ifdef NEED_VA_COPY
# ifdef va_copy
# define Perl_va_copy(s, d) va_copy(d, s)
# elif defined(__va_copy)
# define Perl_va_copy(s, d) __va_copy(d, s)
# else
# define Perl_va_copy(s, d) Copy(s, d, 1, va_list)
# endif
#endif
/* convenience debug macros */
#ifdef USE_ITHREADS
#define pTHX_FORMAT "Perl interpreter: 0x%p"
#define pTHX__FORMAT ", Perl interpreter: 0x%p"
#define pTHX_VALUE_ (void *)my_perl,
#define pTHX_VALUE (void *)my_perl
#define pTHX__VALUE_ ,(void *)my_perl,
#define pTHX__VALUE ,(void *)my_perl
#else
#define pTHX_FORMAT
#define pTHX__FORMAT
#define pTHX_VALUE_
#define pTHX_VALUE
#define pTHX__VALUE_
#define pTHX__VALUE
#endif /* USE_ITHREADS */
/*
Perl_deprecate was not part of the public API, and did not have a deprecate()
shortcut macro defined without -DPERL_CORE. Neither codesearch.google.com nor
CPAN::Unpack show any users outside the core.
=for apidoc_section $warning
=for apidoc Cdm||deprecate|U32 category|"message"
Wrapper around Perl_ck_warner_d() to produce a deprecated warning in the
given category with an appropriate message. The C argument must
be a C string. The string " is deprecated" will automatically be added
to the end of the C.
=for apidoc Cdm||deprecate_disappears_in|U32 category|"when"|"message"
Wrapper around Perl_ck_warner_d() to produce a deprecated warning in the
given category with an appropriate message that the construct referred
to by the message will disappear in a specific release. The C and
C arguments must be a C string. The C string is expected
to be of the form "5.40", with no minor element in the version. The actual
message output will be the result of the following expression C which is why C
and C must be literal C strings.
=for apidoc Cdm||deprecate_fatal_in|U32 category|"when"|"message"
Wrapper around Perl_ck_warner_d() to produce a deprecated warning in the
given category with an appropriate message that the construct referred
to by the message will become fatal in a specific release. The C
and C arguments must be a C string. The C string is expected
to be of the form "5.40", with no minor element in the version. The actual
message output will be the result of the following expression C which is why C
and C must be literal C strings.
=cut
*/
#ifdef PERL_CORE
# define deprecate(category,message) \
Perl_ck_warner_d(aTHX_ packWARN(category), \
message " is deprecated")
# define deprecate_disappears_in(category,when,message) \
Perl_ck_warner_d(aTHX_ packWARN(category), \
message " is deprecated, and will disappear in Perl " when)
# define deprecate_fatal_in(category,when,message) \
Perl_ck_warner_d(aTHX_ packWARN(category), \
message " is deprecated, and will become fatal in Perl " when)
#endif
/* Internal macros to deal with gids and uids */
#ifdef PERL_CORE
# if Uid_t_size > IVSIZE
# define sv_setuid(sv, uid) sv_setnv((sv), (NV)(uid))
# define SvUID(sv) SvNV(sv)
# elif Uid_t_sign <= 0
# define sv_setuid(sv, uid) sv_setiv((sv), (IV)(uid))
# define SvUID(sv) SvIV(sv)
# else
# define sv_setuid(sv, uid) sv_setuv((sv), (UV)(uid))
# define SvUID(sv) SvUV(sv)
# endif /* Uid_t_size */
# if Gid_t_size > IVSIZE
# define sv_setgid(sv, gid) sv_setnv((sv), (NV)(gid))
# define SvGID(sv) SvNV(sv)
# elif Gid_t_sign <= 0
# define sv_setgid(sv, gid) sv_setiv((sv), (IV)(gid))
# define SvGID(sv) SvIV(sv)
# else
# define sv_setgid(sv, gid) sv_setuv((sv), (UV)(gid))
# define SvGID(sv) SvUV(sv)
# endif /* Gid_t_size */
#endif
/* These are simple Marsaglia XOR-SHIFT RNG's for 64 and 32 bits. These
* RNG's are of reasonable quality, very fast, and have the interesting
* property that provided 'x' is non-zero they create a cycle of 2^32-1
* or 2^64-1 "random" like numbers, with the exception of 0. Thus they
* are very useful when you want an integer to "dance" in a random way,
* but you also never want it to become 0 and thus false.
*
* Obviously they leave x unchanged if it starts out as 0.
*
* We have two variants just because that can be helpful in certain
* places. There is no advantage to either, they are equally bad as each
* other as far RNG's go. Sufficiently random for many purposes, but
* insufficiently random for serious use as they fail important tests in
* the Test01 BigCrush RNG test suite by L’Ecuyer and Simard. (Note
* that Drand48 also fails BigCrush). The main point is they produce
* different sequences and in places where we want some randomlike
* behavior they are cheap and easy.
*
* Marsaglia was one of the early researchers into RNG testing and wrote
* the Diehard RNG test suite, which after his death become the
* Dieharder RNG suite, and was generally supplanted by the Test01 suite
* by L'Ecruyer and associates.
*
* There are dozens of shift parameters that create a pseudo random ring
* of integers 1..2^N-1, if you need a different sequence just read the
* paper and select a set of parameters. In fact, simply reversing the
* shift order from L/R/L to R/L/R should result in another valid
* example, but read the paper before you do that.
*
* PDF of the original paper:
* https://www.jstatsoft.org/article/download/v008i14/916
* Wikipedia:
* https://en.wikipedia.org/wiki/Xorshift
* Criticism:
* https://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
* Test01:
* http://simul.iro.umontreal.ca/testu01/tu01.html
* Diehard:
* https://en.wikipedia.org/wiki/Diehard_tests
* Dieharder:
* https://webhome.phy.duke.edu/~rgb/General/rand_rate/rand_rate.abs
*
*/
/* 32 bit version */
#define PERL_XORSHIFT32_A(x) \
STMT_START { \
(x) ^= ((x) << 13); \
(x) ^= ((x) >> 17); \
(x) ^= ((x) << 5); \
} STMT_END
/* 64 bit version */
#define PERL_XORSHIFT64_A(x) \
STMT_START { \
(x) ^= ((x) << 13); \
(x) ^= ((x) >> 7); \
(x) ^= ((x) << 17); \
} STMT_END
/* 32 bit version */
#define PERL_XORSHIFT32_B(x) \
STMT_START { \
(x) ^= ((x) << 5); \
(x) ^= ((x) >> 27); \
(x) ^= ((x) << 8); \
} STMT_END
/* 64 bit version - currently this is unused,
* it is provided here to complement the 32 bit _B
* variant which IS used. */
#define PERL_XORSHIFT64_B(x) \
STMT_START { \
(x) ^= ((x) << 15); \
(x) ^= ((x) >> 49); \
(x) ^= ((x) << 26); \
} STMT_END
#endif /* PERL_HANDY_H_ */
/*
* ex: set ts=8 sts=4 sw=4 et:
*/